5 de septiembre de 2021
1386 • AÑO XXVIII

INICIO - Cultura

¿Existe una relación entre una melodía musical
y los teoremas matemáticos o las teorías físicas? (y II)

Matemáticas, ciencia y música

“Hay una larga disputa en matemáticas sobre si números como 1, 2, 3, y figuras como el triángulo, el cuadrado y el círculo, fueron descubiertos o inventados. Los que adhieren al descubrimiento piensan que hay una especie de ‘limbo’ donde los objetos matemáticos han existido siempre”. Segunda parte del artículo publicado en humanitas.cl, sobre la relación entre una melodía musical y los teoremas matemáticos o las teorías físicas.

Así, en algún momento, ya sea buscando o por accidente, alguien en el pasado muy lejano encontró el número 2, y comenzó a utilizarlo con éxito expandiendo su uso a la tribu [5]. Es entonces un descubridor en el campo de las matemáticas.

Pero no todo el mundo cree que los objetos matemáticos como el círculo tienen existencia independiente, y proclaman más bien que son inventados. El proceso de invención crea matemáticas a partir de la nada, mientras que el proceso de descubrimiento simplemente extrae de una especie de bodega preexistente los conceptos matemáticos, expandiendo así el dominio de la conciencia humana.

Han sido muchos aquellos que creen en el descubrimiento en matemáticas. En el diálogo con Menón, Platón afirma que las estructuras matemáticas son independientes de la experiencia e incluso la preceden, vinculándolas a la existencia del alma. En su visión hay descubrimiento, pero como una especie de recuerdo de algo preexistente en nuestra mente. Más recientemente, el matemático francés Jacques Hadamard en su Psicología de la invención en el campo matemático escribe: “Aunque la verdad todavía no nos es conocida, preexiste e impone ineludiblemente el camino que debemos seguir”. Godfrey H. Hardy, el famoso analista británico en La disculpa de un matemático expresó: “Creo que la realidad matemática está fuera de nosotros, que nuestra función es descubrirla y observarla, y que los teoremas que probamos y que describimos grandilocuentemente como nuestras ‘creaciones’, son simplemente nuestras notas de las observaciones que hacemos” [6].

Por su parte, Henri Poincaré reconoce la existencia de un genio creador en matemáticas, asociándolo a la habilidad para encontrar los teoremas ocultos a través de caminos eficientes elegidos de entre a veces miles de ellos, con participación del inconsciente. Se trataría de una capacidad virtuosa similar a la del ajedrecista que entre numerosas jugadas posibles ve en forma inmediata la más promisoria [7]. Para estos pensadores, los conceptos matemáticos están ahí afuera, en alguna parte, en un reino desconocido y misterioso, quizás ligados a estructuras profundas de la mente humana donde “hay que irlos a buscar” para ser expuestos y llevados a la conciencia.

Históricamente, los matemáticos trataron primero los conceptos más cercanos a la vida diaria, y cuando se quedaron sin problemas que resolver en ese ámbito, extendieron su trabajo a otros dominios en los cuales los objetos matemáticos no tienen un correlato obvio en el mundo físico.

El respaldo a esta creencia en el caso de los objetos más simples, como los números, proviene de su relación con el mundo exterior. Hay una distinción objetiva entre tener que alimentar a uno u once niños en una familia, enfrentar solo o acompañado a un pelotón de 10 guerreros en la selva, acoger a los amigos en una sala de estar sin sillas o en una con seis asientos, o recibir como regalo un pastel entero o uno medio comido. Las figuras geométricas son también parte de nuestra experiencia común. Las piedras tienen formas y, cuanto más esféricas, más fáciles de rodar. El sol y la luna aparentan círculos perfectos y sus órbitas también asemejan círculos. Uno de los conceptos más antiguos en geometría, que data de unos miles de años atrás y asociado a Pitágoras, es que un triángulo con lados en las proporciones de 3, 4 y 5 tiene un ángulo recto. Este ángulo es particularmente significativo en la construcción de viviendas y monumentos, ya que define la relación entre las líneas horizontal y vertical.

Los números simples y las figuras geométricas elementales tienen una fuerte relación con la observación cotidiana del mundo que nos rodea. Verlos como preexistentes en el mundo y como “descubiertos” resulta, entonces, natural. Uno puede, por supuesto, argumentar que los conceptos “número 2” y “círculo” fueron inventados para hacer una representación abstracta, pura y simple en la mente de lo que se observa, pero entonces este uso del concepto de “invención” se aparta de la definición que estamos utilizando y solo oscurece la discusión.

¿Es esto cierto de todos los objetos matemáticos? De ninguna manera. El famoso Teorema de Fermat, resuelto en 1995 por el matemático británico Andrew Wiles, es una extensión del teorema de Pitágoras a un reino apartado, de alta abstracción [8]. Euclides construyó su monumental geometría a partir de apenas cinco axiomas bastante elementales y obvios, como que entre dos puntos se puede dibujar una y solo una línea de longitud mínima (minimal), la línea recta. Luego una miríada de teoremas se sigue a través de la deducción lógica, incluyendo algo tan sorprendente como que la suma de los ángulos internos en un triángulo equivale a media vuelta de círculo. Sin embargo, su geometría, muy relacionada con nuestra vida cotidiana, es válida solamente sobre superficies planas como una mesa o una cancha de fútbol.

Más de dos mil años después, Nikolai Lobachevski, Jano Bolyai y Bernhard Riemann la ampliaron de forma independiente a espacios curvos como la superficie de una esfera, donde los axiomas de Euclides no funcionan: los ángulos internos de un triángulo ya no suman 180 grados, y entre dos puntos se pueden dibujar no una, sino dos líneas minimales de diferente longitud. Son conclusiones extrañas para seres como nosotros, cuya experiencia cotidiana es más bien plana. Además, el estudio de objetos en imaginarios espacios de cuatro o más dimensiones se convirtió en moda, circulando la broma de que un automóvil es un ejemplo entre cuerpos que se equilibran sobre N ruedas, para el caso particular de N = 4.

Históricamente, los matemáticos trataron primero los conceptos más cercanos a la vida diaria, y cuando se quedaron sin problemas que resolver en ese ámbito, extendieron su trabajo a otros dominios en los cuales los objetos matemáticos no tienen un correlato obvio en el mundo físico. Es interesante, sin embargo, que a veces estas extensiones abstractas han encontrado su nicho en teorías que describen en forma muy práctica la materia que nos rodea.

Por ejemplo, la Relatividad General de Albert Einstein interpreta la gravitación como una deformación geométrica de un espacio de cuatro dimensiones, el espacio-tiempo, visión a la cual cae como anillo al dedo la aparentemente inútil geometría para espacios curvos de Riemann, concebida más de cincuenta años antes. También, algunas teorías recientes que describen a las partículas elementales se formulan ya no en el espacio cotidiano de tres dimensiones: arriba, al frente y al lado, sino en un espacio imposible de imaginar, de once o más dimensiones.

Es interesante que a veces estas extensiones abstractas han encontrado su nicho en teorías que describen en forma muy práctica la materia que nos rodea.

Así, los desarrollos matemáticos que una vez parecieron meras especulaciones abstractas terminan teniendo un correlato con el mundo físico y, por lo tanto, un sabor de haber estado siempre ocultos en la naturaleza siendo solo descubiertos. Pero hasta donde sabemos hoy, en matemáticas no hay necesidad estricta de esta correlación, puede haber todo un sector —y ciertamente lo hay— que es genuinamente abstracto, siendo el rigor lógico, que impera entre sus verdades, la única restricción irrenunciable a que está sometido.

Hay otra característica que emerge de la convicción de que en matemáticas se descubre, no se inventa. He oído a alguien afirmar que ha descubierto un nuevo teorema en geometría. Leyendo entre líneas, esto es como decir: “Mira, como sabes, en el cajón de verdades matemáticas hay un gran número de teoremas sobre geometría, algunos de los cuales ya son conocidos. Entre los que permanecen ocultos, escarbando, acabo de encontrar uno”. Si esta persona no lo hubiera descubierto, entonces otra persona lo haría, siendo sólo cuestión de tiempo, genio y suerte encontrarlo. Una vez que los axiomas se dan y las reglas de la lógica se aceptan como el camino hacia las verdades, entonces encontrar un teorema es como recoger una flor en un sendero, o avistar una isla en una travesía por los mares, experiencias ajenas a la invención libre en el sentido estricto de la palabra. El teorema existe atemporalmente en el espacio virtual de consecuencias lógicas, y podría ser encontrado por cualquiera que respete las reglas de búsqueda, incluida, por supuesto, una máquina. Esta realidad favorece la noción de que las matemáticas están «ahí afuera», y que el ejercicio de hacer matemáticas es uno de verdadero descubrimiento. Sin embargo valga decir que la pregunta acerca del origen de los axiomas que engendran todas esas verdades, no demostrables en general, queda sin respuesta desde esta postura.

Si bien la lógica permite conectar teoremas y colgar estos de axiomas, es interesante también notar que existen verdades matemáticas que no son demostrables, como observó Kurt Gödel en 1931 [9]. Esto sugiere una limitación estructural de nuestras capacidades mentales, cuyo parangón es el principio de incerteza de la física cuántica que mencionaremos brevemente más adelante.

Francisco Claro Huneeus
Conferencia dictada en la Universidad de Oxford

Publicado en www.humanitas.cl

NOTAS

[5] Ver por ejemplo Amir D. Aczel, Finding Zero, a Mathematician’s Odyssey to Uncover the Origins of Numbers. St. Martin’s Press, 2015, traducción al español Biblioteca Buridán.

[6] Hardy, Godfrey Harold, A Mathematician’s Apology. Cambridge University Press, Londres, 1940.

[7] Poincaré, Henri, The Foundations of Science. Science Press, 1924, pp. 383-394.

[8] Ver por ejemplo: Aczel, Amir, Fermat´s Last Theorem. Bantam, 1997.

[9] Gödel, Kurt, Über formal unentsheibdare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, vol. 38, 1931, pp. 173-198. Una lúcida discusión del aporte de Gödel se encuentra en Nagel, Ernest y Newman, John Henri, Gödel’s Proof. New York University Press, 1958.